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Abstract
We numerically study the ground state phase diagram of the two-dimensional hard-core
Bose–Hubbard model with nearest-(V1) and next-nearest-neighbour (V2) repulsions. In
particular, we focus on the quarter-filled phases where one supersolid and two solid phases are
observed. Using both canonical and grand canonical quantum Monte Carlo (QMC) methods
and a mean-field calculation, we provide evidence for the existence of a commensurate
supersolid. Despite the two possible diagonal long-range orderings for the solid phase, only one
kind of supersolid phase is found to be energetically stable. The competition between the two
solid phases manifests itself as a first-order phase transition around 2V2 ∼ V1. The change of
order parameters as a function of the chemical potential is also presented.

(Some figures in this article are in colour only in the electronic version)

The Bose–Hubbard model has recently attracted a lot of
attention for the possibility of observing the supersolid
phase [1] either in optical lattices [2] or in magnetic
systems [3]. The simultaneous breaking of both translational
and U(1) gauge symmetry is a delicate state of matter so
that only recently has experimental evidence of a possible
supersolid phase been provided by the measurement of the
non-classical rotational inertia (NCRI) [4] in rotating solid
4He [5]. However, the observed NCRI may be attributed to the
superflow between microcrystal interfaces and the issue is still
largely controversial [6]. Thanks to technological advances
in trapping atoms or even molecules at very low temperature
in optical lattices, it provides an ideal testing ground for the
search for the supersolid phase. The Hubbard model of hard-
core bosons in a frustrated triangular lattice [7] and soft-
core bosons [8] in a square lattice are among the possible
candidates. Besides the optical lattice experiments, various
magnetic systems have been suggested [3] to be candidates for
the realization of a spin supersolid in some carefully chosen
parameter regime. In the case of spin S = 1

2 , where the system
is equivalent to the hard-core Bose–Hubbard model, the spin
supersolid represents the state of spatial modulation of the in-
plane spin projection.

The hard-core Bose–Hubbard model with only nearest-
neighbour (nn) interactions on a square lattice has ground
states of superfluid ordering and checkerboard solid ordering.

1 Present address: Department of Physics, National Tsing Hua University,
Hsinchu 30013, Taiwan.

Figure 1. Classical lattice structures of star solid (a) A and (b) B
phases.

On the other hand, a sufficiently large next-nearest-neighbour
(nnn) interaction leads to the checkerboard ordering being
replaced by a striped ordering which can coexist with a
superfluid to form a striped supersolid around half-filling [9].
Recently we revisited the model [10] and found a new
solid phase with ’star’ ordering (figure 1(a)) at quarter-filling.
Interestingly, this star solid (A phase) ordering can also coexist
with the superfluid ordering to form a star supersolid phase at
and around quarter-filling. It has also been suggested [11] that
another solid (B phase) order can be stabilized when 2V2 > V1.
However, whether the supersolid ground state with this solid
ordering is stable is unclear and the complete ground state
phase diagram including the B phase solid is still unavailable.
These are the questions we attempt to address in this work. We
also discuss the possibility of the existence of a commensurate
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supersolid, in which the particle number is commensurate with
the solid structure, in the context of a vacancy supersolid. We
will show in this paper that the quarter-filled star supersolid
is commensurate but agrees with the notion of a vacancy
supersolid.

Specifically, we study the extended Bose–Hubbard model
on a 2D square lattice with the Hamiltonian

Hb = −t
nn∑

i, j

(b†
i b j + bi b

†
j) + V1

nn∑

i, j

ni n j

+ V2

nnn∑

i, j

ni n j − μ
∑

i

ni (1)

where b(b†) is the boson destruction (creation) operator and∑nn
(
∑nnn

) sums over the (next-) nearest-neighbouring sites.
For convenience we fix the energy scale by setting t = 1
throughout this paper. By taking the transformation b† →
S† and n → Sz + 1

2 , this Hamiltonian can be mapped
to a spin XXZ model with nn and nnn exchange couplings
under a magnetic field h = μ − z

2 (V1 + V2) (z is the
coordination number). At half-filling, the ground state of
the Hamiltonian Hb is a checkerboard solid (characterized by
wavevector Q = (π, π)) for strong nn coupling V1, or a striped
solid (characterized by wavevector Q = (π, 0) or (0, π)) for
strong nnn coupling V2 [9]. For V1 ∼ 2V2, quantum frustration
destabilizes both solid orders and leads to a uniform superfluid
phase. No supersolid phase is found at half-filling. Away
from half-filling, however, a striped supersolid is observed for
dominating nnn interaction 2V2 > V1, while the checkerboard
supersolid phase is still unstable against phase separation for
large nn interaction V1 > 2V2. It has been argued that the
motion of domain walls reduces the ground state energy so that
the checkerboard supersolid is energetically unstable [8].

Further away from half-filling, new types of solids in the
vicinity of quarter-filling, as well as three-quarter-filling, have
been found very recently [10–12] as mentioned above. The A
phase quarter-filled solid (see figure 1) has a finite structure
factor S(Q) = ∑

i j〈ni n j eiQri j 〉/N2 at wavevectors Q0 =
(π, π), (π, 0) and (0, π), which implies a star-like occupation
pattern. Moreover, doping the star solid with extra bosons
yields a star supersolid via a second-order phase transition.
The formation of domain walls is no longer energetically
favourable and hence the star supersolid is stable upon doping
instead of phase separation. More interestingly, this star
supersolid persists even at exact quarter-filling for a wide range
of parameters V1 and V2 (see figure 8). This result seems to
contradict a recent proof [15] that the necessary condition for
supersolidity is to have zero-point vacancies or defects and that
no commensurate supersolid is possible. Reference [11, 12]
claims they do not observe a quarter-filled star supersolid in
their QMC data. Unfortunately, no data on the structure factor
and superfluidity are presented in the right V1, V2 parameter
regime where we observed the quarter-filled supersolid. One
natural question that arises about the discrepancy is whether
a canonical approach, used in [12] where particle number is
fixed, leads to different results. In order to clarify the issue,
we provide further evidence using a Green’s function Monte
Carlo (GFMC) method to support the existence of a quarter-
filled supersolid.

1. Stochastic series expansion

In order to clarify the issue of the presence of the SS phase at
n = 0.25, we numerically study the model with both the grand
canonical and canonical approaches. The grand canonical
calculation is carried out using the standard stochastic series
expansion (SSE) Monte Carlo method implemented with a
directed loop algorithm [13]. While SSE works on the grand
canonical ensemble, in order to fix the density n we scan the
chemical potential μ to find an average density 〈n〉 = 0.25 with
an uncertainty less than 0.01. It turns out, as shown below, that
this method generates the same result as the GFMC. In SSE,
the superfluidity, given by ρx(y) = 〈W 2

x(y)〉/4βt , is computed
by measuring the winding number fluctuation as usual.

2. Green’s function Monte Carlo

The GFMC starts with a Jastrow variational wavefunction,
which is defined by applying the density Jastrow factor to a
state with all the bosons condensed into the q = 0 state:

|�J〉 = exp

{
− 1

2

∑

i j

vi, j ni n j

}
|�0〉, (2)

where |�0〉 = (
∑

i b†
i )

N |0〉 is the non-interacting boson
ground state with N particles and vi, j are parameters that can
be optimized to minimize the variational energy [14]. In order
to take the hard-core constraint into account, configurations
with more than one boson on a single site are projected out
from (2). The wavefunction |�J〉 in (2) was shown to be able
to turn a non-interacting bosonic state into a Mott insulator if
a long-range Jastrow factor is included. In our recent work,
we have also shown that the supersolid and solid phases can
also be described in the same wavefunction. However, the
number of variational parameters in vi, j grows exponentially
with the lattice size which costs a lot of computation time for an
optimized wavefunction. Instead of including parameters of all
ranges, we use a Gutzwiller projection factor exp

{∑
i∈A gni

}

to enhance the diagonal order. Here g is a variational parameter
which controls the diagonal order specified by the sublattice
A. Obviously, this factor can stabilize the solid and gives a
reasonably good trial energy when V1 and V2 are large. We
found that a low variational energy can be acquired for the
A-type supersolid and solid without the projection factor. On
the other hand, a relatively stable wavefunction is found by
including the projection factor for the B-type solid.

In order to investigate the exact ground state properties,
the Green’s function Monte Carlo method is employed to
improve the variational results. In this work, we choose
the multi-walker stochastic reconfiguration method to prevent
the simulation from blow-up or dead-ends in the large power
limit. To benchmark our method we compare our GFMC
data (points) with the exact results (lines) without using
Monte Carlo for a 6 × 6 lattice in figure 2. We can see
that the GFMC results are consistent with the exact ones.
The underestimation of the diagonal order in the variational
wavefunction is corrected as the number of iterations increases.
We have verified that the same ground state properties can also

2
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Figure 2. (a) Ground state energy, structure factor (b) S(π, 0), (c) S(π,π) and (d) condensate density Nk=0 obtained by GFMC of a 6 × 6
lattice (V1 = 2, V2 = 4.5), at quarter-filling n = 0.25 as a function of iteration The guiding function is the same as trial wavefunction with
v1,0 = 0.9, v1,1 = 0.83. 4000 walkers are used in the GFMC calculation.

Figure 3. (a) Structure factors S(π, 0) and S(π,π) and (b) condensate density Nk=0 obtained by GFMC for lattice 12 × 12 (V1 = 4,
V2 = 3.8) at n = 0.25 as a function of iteration number. Two variation parameters g = 0.2, 0.4 are shown. Dashed lines are results obtained
from SSE for comparison.

be obtained by using the wavefunction with diagonal order
(g �= 0).

Now we present the GFMC results for a larger lattice.
In figure 3 we show the structure factors and condensate
Nk=0 = b†

k=0bk=0 as a function of iteration number. The
trial wavefunction with A-type diagonal order is used as
the trial wavefunction. In order to check that the ground

state can be reached, regardless of the choice for g, we
present results of g = 0.2 and 0.4. The wavefunction
is optimized for all parameters before GFMC is applied.
The corresponding data obtained by SSE (dashed lines) are
also shown for comparison. As we can see, although the
optimized wavefunction overestimated the structure factor
and underestimated the condensate density, consistent results

3
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Figure 4. The same as figure 3 but here V2 = 3.4 and 4.4.

with SSE are obtained as the number of iterations increases.
Figure 4 shows similar calculations for V2 = 3.4 and
4.4, corresponding to superfluid and A-type solid phases,
respectively. The data clearly show the convergence of the
GFMC approach and are consistent with the SSE results.

3. Mean-field theory

To further investigate the effect of quantum fluctuations on the
model, we also obtain the ground state phase diagram using a
simple mean-field approach. A mean-field wavefunction

|�〉MF =
∏

i,α

(ui |1〉i,α + vi |0〉i,α) (3)

is given to represent the superfluid, star solid and star
supersolid phases. Here α denotes the index of a 2 × 2 unit
cell while i = 1, 2, 3, 4 is the sublattice index inside the cell.
|1〉i,α (|0〉i,α) is the occupied (empty) Fock state at the i th site
of the unit cell α while ui(vi ) is the corresponding variational
parameter. The energy of |�〉MF is then minimized to
obtain the ground state wavefunction. This MF wavefunction
successfully predicts the existence of a quarter-filled star
supersolid as well as the superfluid and star solid as shown in
the inset of figure 8.

4. Quarter-filled supersolid

Figure 5 shows the result of SSE and GFMC at V1 = 4
and 8 for small lattice size. The agreement between both
approaches is clear and verifies that our attempt to fix the
boson density n to 0.25 in the grand canonical SSE does not
lead to any measurable discrepancy of the physical quantities
we are interested in with the canonical GFMC. The fact
that the condensate density Nk=0 is found to be larger than
the superfluid density ρx in some of the data in figure 5
originates solely from the small size (L = 12) we used in this
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Figure 5. Comparison of data obtained from the SSE (filled
symbols) and GFMC (open symbols) for lattice size L = 12. We
show in the inset the finite size behaviour of the QMC data of ρx and
Nk=0 for V2 = 2.2, 4.0 and V1 = 2.0. Temperature used in the SSE is
T/t = 0.02.

comparison. In the inset, we plot the QMC data of ρx and Nk=0

as a function of 1/L to show the finite size scaling behaviour
at two typical points of V2 = 2.2 and 4.0, respectively, for
V1 = 2.0. In the superfluid phase with V2 = 2.2, Nk=0

drops below ρx for L � 20 as both quantities scale similarly
and converge to finite values when L � 24. For the case of
V2 = 4.0, both ρx and Nk=0 converge to zero as L → ∞, as
expected in the solid phase. The coexistence of superfluid order
and star crystal structure for 3.5 � V2 � 4.0 in figure 5(a)
clearly signals the supersolid phase at quarter-filling. The
uniform superfluid develops spatial modulation, i.e. becomes
a supersolid, continuously as V2 increases and gradually loses
its superfluidity at the same time until it eventually becomes
a star solid. To demonstrate that the supersolid ground state
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Figure 6. Finite size analysis of the order parameters ρx and S(π, 0)
from SSE for V1 = 2.0.

survives at larger lattice size and at the thermodynamic limit, a
finite size analysis is carried out in figure 6 for V1 = 2. S(π, 0)

scales to zero in the superfluid phase whereas ρx scales to zero
in the solid phase. It is only in the supersolid phase (V2 = 4.4
in figure 6) that both S(π, 0) and ρx scale to finite values. It
is remarkable that simple MF theory also correctly predicts the
existence of a quarter-filled SS and quantum fluctuation does
not destroy the long-range order in the SS phase, in contrast
to the case of a Kagomé lattice [16]. Except that the solid A
and B phase are indistinguishable in the MF level, MF theory
successfully reproduces all phases at quarter-filling as shown
in the inset of figure 8.

At first glance, the existence of a supersolid at
commensurate density contradicts the notion of a vacancy
supersolid. Prokof’ev and Svistunov [15] have proved
that superfluidity has zero probability of occurring in
commensurate solids in nature, or in other words, the necessary
condition for the supersolidity is the presence of vacancies or
defects. This is due to the asymmetry between vacancies and
interstitials. However, this result, as admitted in their paper,
does not apply to systems with explicitly broken translation
symmetry, such as in lattice models where commensurability
is enhanced by hand. In our system, the commensurability
of the quarter-filled supersolid can always be ensured by
adjusting the chemical potential provided there is no phase
separation. Vacancies and interstitials (this means bosons at
the sublattice sites) that arise from quantum fluctuations do
not form bound pairs and are free to move away from each
other and this, therefore, leads to superflow. The interstitial-
vacancy symmetry is generally absent in nature but is preserved
in this case by the external potential that fixes bosons only
at the lattice points. Based on the measured structure factors
S(π, π), S(π, 0) and S(0, π) and boson density n, one can
easily deduce the boson densities on each sublattice. Figure 7
shows that bosons are not localized at only one sublattice but
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Figure 7. SSE result of (a) average density n, (b) sublattice densities,
(c) superfluidity and (d) structure factors as a function of chemical
potential μ for V1 = 2.0 and V2 = 4.6. Open (filled) symbols denote
the result for lattice size 24 × 24 (48 × 48).

have finite occupation in all four sublattices. The data indicate
that there are more than 30% of vacancies in the quarter-filled
supersolid, which is consistent with the picture of a vacancy
supersolid.

To gain more insight of the quarter-filled supersolid phase,
we plot in figure 7 the order parameters as functions of the
chemical potential μ. Starting from small density, the ground
state is an uniform superfluid in which all sublattice densities
are equal. While increasing μ until quarter-filled, the system
undergoes a second-order phase transition to a star SS. Note
that, although there is a small dip of superfluidity in the SS
state, it does not reduce to zero even at n = 0.25. There
is no indication that n = 0.25 is a special density that
acquires particular treatment like the canonical calculation.
Furthermore, no noticeable change is observed when doubling
the lattice size to 48 × 48 (filled symbols in figure 7). Doping
more bosons will destabilize the star SS phase because of the
nnn repulsion that leads to a striped SS via a discontinuous
phase transition between the two different broken translation
symmetries. Striped SS is also observable at n = 0.25 when V1

is small enough. On the other hand, while there are two kinds
of star solid (A and B phase), a natural question is whether
SS of both kinds exist at or away from quarter-filled. We will
address this issue in section 5.

5. Supersolid A and B phase

It is interesting to note that, at quarter-filling, the classical
ground state of the frustrated Hamiltonian H is highly

5
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Figure 8. Ground state phase diagram of Hb for n = 0.25. The lines
are guides to the eyes. Solid (dotted) lines represent second
(first)-order phase transition boundaries. Black circles (squares)
denote the data obtained from the SSE (GFMC) for L = 28
(L = 16). The inset shows the MF result. It is noted that star solid A
and B phases cannot be distinguished in the MF level. There is a
first-order phase transition from the star SS to striped SS phase for
small V1. We refer to [10] for detailed discussions of the striped SS.
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Figure 9. SSE results for V1 = 8.0 and V2 = 3.5. The ground state
at n = 0.25 is a B phase solid. Doping away from n = 0.25 leads to
a first-order phase transition to the SF phase. No B phase supersolid
is found.

degenerate. Translating any lines of bosons in figure 1(a)
by one lattice constant of the solid A phase along, say, the
x direction will create a domain wall with no energy cost.
Translating alternate lines of bosons generates a B phase solid.
An enormous number of ways to create domain walls implies
that the classical ground state has macroscopic degeneracy.
This degeneracy, however, is lifted by quantum fluctuation that
yields a ground state of A phase if V1 < 2V2 or B phase
otherwise. This is another typical example of the order by
disorder phenomenon [7]. As discussed in previous sections,
it leads to a star SS A phase in a wide parameter range,
similar to the scenario of the half-filling SS in the frustrated
triangular lattice [7]. On the other hand, the existence of the

Figure 10. Hole doping on the quarter-filled solid B phase. (a) A
single hole. (b) A line of holes forms a domain wall. (c) Shifting the
bosons on one side has slightly (to the fourth order) larger energy
gain. (d) Hopping of bosons along the domain wall leads to a kinetic
energy gain larger than that of an isolated hole.

star SS B phase has not been clarified. Here we complete the
phase diagram for larger V1 where the solid B phase can be
stabilized at quarter-filling. Figure 8 shows that, for V1 > 6,
when increasing from a small nnn interaction V2, the SF phase
changes to the solid B phase via a first-order phase transition
without passing an intermediate SS B phase. The star solid
A phase emerges when further increasing V2 until 2V2 � V1.
Furthermore we do not observe any SS B phase away from
n = 0.25 as shown in figure 9 at a representative V1 = 8.0 and
V2 = 3.5. Instead there is a first-order phase transition from
the gapped solid B phase to a uniform SF phase which implies
that the SS of B phase symmetry is unstable toward phase
separation. This can be understood by the simple argument
of domain formation as discussed in the case of hard-core
checkerboard SS [8]. An extra hole in the quarter-filled solid
phase B costs no potential energy but an increase in chemical
potential μ (see figure 10(a)). The kinetic energy gain is
−2t2/V1 − 2t2/V2 per hole. However, lining up the holes
forms a domain wall in which hopping of bosons along the wall
leads to a kinetic energy gain of −2t (figure 10(d)). Therefore
doping extra holes into the quarter-filled solid B phase leads
to phase separation instead of a uniform SS phase. A similar
argument applies for boson doping and hence no SS B phase is
found to be stable.

6. Summary

We have presented a comprehensive numerical study on the
extended hard-core Hubbard model, in particular, on the SS
phases at the quarter-filled density. Based on results of the SSE,
GFMC and MF calculations, we provide convincing evidence
for the existence of the star SS A phase at exactly n = 0.25,
in contrast to our previous study. We clearly show that the SS
A phase found at n = 0.25 is consistent with the notion of a
vacancy SS. The star SS phase is a consequence of the order by
disorder phenomenon by which the ground state degeneracy is
lifted. Furthermore, the physical natures of the solid A and
B phases are also studied. Although classically degenerate,
these two states compete with each other through quantum
fluctuations and the final stability depends on the competition
between nn (V1) and nnn (V2) interactions. We present a
complete phase diagram including also the solid B phase. The
SS B phase, on the other hand, is found to be unstable toward
phase separation due to the kinetic energy gain of domain
formation.

6
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